# **BIOLOGY II**

012

10/11/2016 08.30am - 11.30am



# **ADVANCED LEVEL NATIONAL EXAMINATIONS, 2016**

## SUBJECT: BIOLOGY

## **PAPER II: THEORY**

# COMBINATIONS: - BIOLOGY-CHEMISTRY-GEOGRAPHY (BCG) - MATHEMATICS-CHEMISTRY-BIOLOGY (MCB) - PHYSICS-CHEMISTRY-BIOLOGY (PCB)

### **DURATION: 3 HOURS**

#### **INSTRUCTIONS:**

- 1) Do not open this question paper until you are told to do so.
- 2) Write your names and index number on the answer booklet as written on your registration form and **DO NOT** write your names and index number on additional answer sheets of paper if provided.
- 3) This paper consists of **two** sections: **A** and **B**.
  - Section A: Attempt all questions.
  - Section B: Attempt any three questions.
- 4) Use **blue** or **black** pen.

#### 012 - Page 1 of 4

(70marks) (30marks)

#### SECTION A: ATTEMPT ALL QUESTIONS. (70 MARKS)

What are the four characteristics that all members of a species share?
The figure below shows the break down of a sucrose molecule.



- (a) Name the bond indicated by letter T.
- (b) State the name of this type of reaction in which water is involved.
- (c) State any two roles of water within plant cells other than taking part in breakdown reactions.
- 3) The figure below is an electron micrograph of a part of an animal cell. A centriole is labeled.



- (a) Name the structures A, B and C.
- (b) Describe the roles of centrioles in animal cells.
- 4) (a) Explain why DNA replication is described as semi-conservative.
  - (b) The enzyme that catalyses the replication of DNA checks for errors in the process and corrects them. This makes sure that the cells produced in mitosis are genetically identical. Explain why checking for errors and correcting them is necessary.

10 E

(2marks)

(3marks)

(3marks)

(3marks)

#### 012 - Page 2 of 4

(1mark)

(1mark)



11

(4marks)

5) The figure below shows the structure of ATP.



| (a) (                                                                            | i) Name the nitro   | genous base la    | belled B.             |                   |                                          | (1mark)      |  |  |
|----------------------------------------------------------------------------------|---------------------|-------------------|-----------------------|-------------------|------------------------------------------|--------------|--|--|
| (b)                                                                              | II) Name the suga   | as having a un    | iversal role a        | as the energy     | ourrency in                              | (Imark)      |  |  |
|                                                                                  | all living organist | ns Explain wh     | v it is descri        | ibed in this wa   | v                                        | (4marks)     |  |  |
| 6) (a)                                                                           | Cholera is transi   | nitted by food    | and water th          | at is contami     | hated by faecal                          | (111101-110) |  |  |
| 0) (a)                                                                           | matter Suggest      | a reason why i    | in countries          | where cholers     | is common                                |              |  |  |
|                                                                                  | habies who are h    | reast fed are a   | ffected by cl         | olera far less    | often than babies                        | 5            |  |  |
|                                                                                  | who are bottle fe   | d                 |                       |                   |                                          | (3marks)     |  |  |
| (b)                                                                              | Suggest reasons     | why injecting a   | antibiotics ir        | nto the blood o   | an be effective in                       | ()           |  |  |
| (3)                                                                              | killing the choler  | a bacterium w     | hile the sam          | e antibiotic ta   | ken orally                               |              |  |  |
|                                                                                  | (by mouth) is no    | t.                |                       | ×.,               | J                                        | (4marks)     |  |  |
| 7) Hor                                                                           | nozvgous purple     | stemmed toma      | toes were cr          | ossed with gro    | een stemmed plan                         | nts.         |  |  |
| When the F1 were all purple stemmed. When the F1 plants were allowed to self -   |                     |                   |                       |                   |                                          |              |  |  |
| pollinate, the resulting F2 produced 310 purple stemmed plants and 120 green     |                     |                   |                       |                   |                                          |              |  |  |
| ster                                                                             | nmed plants.        | 0 1               |                       | -                 | C                                        |              |  |  |
| (a) '                                                                            | Which is the dom    | inant allele?     | *                     |                   | 11                                       | (1mark)      |  |  |
| (b) 1                                                                            | Draw a genetic di   | agram to show     | the F1 and            | F2 crosses.       | y.                                       | (5marks)     |  |  |
| 8) (a) State one similarity and one difference between active transport and      |                     |                   |                       |                   |                                          |              |  |  |
| f                                                                                | acilitated diffusio | n.                |                       |                   |                                          | (2marks)     |  |  |
| (b) '                                                                            | The presence of r   | nany mitochon     | dria is typic         | al of cells that  | carry out active                         |              |  |  |
|                                                                                  | transport. Explai   | n why this is so  | 0.                    | ,                 |                                          | (2marks)     |  |  |
| 9) In t                                                                          | he making of uri    | ne, glucose is in | nitially lost :       | from the blood    | but is then                              |              |  |  |
| real                                                                             | osorbed back inte   | o blood by kidn   | ey cells. Ex          | plain why it is   | important that                           |              |  |  |
| this                                                                             | reabsorption oc     | curs by active t  | ransport ra           | ther than diffu   | ision.                                   | (4marks)     |  |  |
| 10) A study of a woodland food chain produced the following ecological pyramids: |                     |                   |                       |                   |                                          |              |  |  |
|                                                                                  | Pyramid             | Pyramid           | Pyramid               |                   |                                          |              |  |  |
| 9                                                                                | of numbers          | of biomass        | of energy             |                   |                                          |              |  |  |
|                                                                                  |                     |                   | 5 5                   | Sparrowhawk       |                                          |              |  |  |
|                                                                                  |                     |                   | 92                    | Robin             |                                          |              |  |  |
|                                                                                  |                     |                   | 806                   | Moth caterpillars |                                          |              |  |  |
|                                                                                  |                     |                   | 4978                  | Beech             |                                          |              |  |  |
| (a) Wh                                                                           | ich organisms ar    | e the primary o   | consumers?            | trees             | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | (1mark)      |  |  |
| (b) Cal                                                                          | ulate the percent   | age efficiency v  | with which $\epsilon$ | energy is trans   | ferred from moth                         | ( <b>/</b> / |  |  |

- carterpillars to robins. Show your working.
- (c) Suggest suitable units for the figures shown in the pyramids of energy.
- (d) In the pyramids of numbers, the block representing beech trees is smaller than that of moth carterpillars. In other pyramids it is larger. Explain this difference.

(3marks)

(2marks)

(1mark)

### 012 - Page 3 of 4

- 11) Explain why animals are dependent on light energy.
- 12) (a) Plant cells that have a water potential of 600kPa are placed in solutions of different water potentials. State in each of the following cases whether, after 10 minutes the cells would be:
  - Turgid
  - Plasmolysis
  - Incipient plasmolysis

Solution A = -400 kPa

Solution B = -600 kPa

Solution C = -900 kPa

Solution D = pure water.

- (b) If an animal cell with a potential of 700 kPa was placed in each of the solutions above; in which solutions is it likely to burst?
- 13) The graphs below show the rate of reaction of four different protein-digesting enzymes over a range of pH.



(a) Suggest which enzyme would be most suitable to use to tenderise meat (break up meat fibres to make it easier to chew).

(b) Why are proteins so important to living organisms?

### (4marks) (4marks)

(5marks) (5marks)

(10marks)

#### SECTION B: ATTEMPT ANY THREE QUESTIONS ONLY. (30 MARKS)

14) The mammalian oestrous cycle is controlled by hormones secreted by the pituitary gland and the ovaries. Describe the roles of the following hormones in the control of this cycle:

(a) The pituitary hormones FSH and LH.

(b) The ovarium hormones, oestrogen and progesterone.

15) Copy and complete the table below.

| Plant growth substance | Site of synthesis | Effect in plant |  |
|------------------------|-------------------|-----------------|--|
| Auxin                  |                   |                 |  |
| Gibberellin            |                   |                 |  |
| Cytokinin              |                   |                 |  |
| Abscisic acid          |                   |                 |  |
| Ethene                 |                   | -               |  |

16) (a) Define the term chromosomal aberration.

- (b) Describe different forms of chromosomal aberration.
- 17) (a) Describe characteristics of enzymes.
  - (b) Explain how a non-competitive inhibitor affects the rate of an enzyme-catalysed reaction.
- 18) Describe the processes that are involved in protein synthesis.

.

(2marks) (8marks) (5marks)

(5marks) (10marks)

#### 012 - Page 4 of 4

(4marks)

(4marks)

(1mark)